Tetrahedron Letters,Vo1.30,No.22,pp 2915-2918,1989 0040-4039/89 \$3.00 + .OO Printed in Great Britain

SYNTHESIS AND DEPROTONATION OF 1-(p-TOLUENESULFONYL)-2-AL-KENYL CARBAMATES. DICHOTOMOUS ACHIRAL d¹ AND CHIRAL d³ REA-**GENTS FOR CARBONYL ADDITION DIRECTED BY METAL EXCHANGE**

Michael Reggelin, Petra Tebben, Dieter Hoppe*

Instltut fbr Organische Chemie, Universitat Kiel, Olshausenstr. 40, **D-2300 Kiel** 1, FRG.

Summary. The title compounds 3 were prepared by electrophilic sulfonylation of allylic carbamates **1. The** achiral lithium anions **4** add to carbonyl compounds with the α -position, thus permitting nucleophilic alkenoylation whereas the chiral titanium derivates **8** undergo completely regioselective y-addition, representing a new class of homoenolate reagents.

Chiral, α -lithiated 2-alkenyl carbamates of type \mathbf{A} , \mathbf{R}^1 = alkyl or H, exhibit considerable configurational stability 1,2*3 and have been used for homoenolate reagents in enantioselective homoaldol reactions." The addition of **A** to aldehydes takes place with a high degree of reagent-controlled chirality transfer.¹ This quality is detrimental when an asymmetric induction on newly formed stereocenters by the chiral reaction partner, e.g. a chiral aldehyde, is required. In order to create an achiral allylic anion **B** with planar or rapidly inverting a-carbon atom, we introduced as electron withdrawing group (EWG) p-toluenesulfonyl.⁵

The allylic carbamates 1 were deprotonated by the usual method⁶ in hexane and the lithium compound 2 treated with p-toluenesulfonyl fluoride (TosF)^{7,8} to give the desired sulfones 3; Table 1. With the exception of the γ -unsubstituted compounds **2a** and **2b**, which gave rise to some y-adduct 5, the substitution reaction proceeds with high α -regioselectivity (Table 1). Owing to a rapid proton transfer from the more acidic sulfones⁹ 3 onto 2, the maximum yield is 50%, based on **1 (Method** A). The yields are improved by sequential addition of n-butyllithium and TosF in portions to the solution of **1** (Method B).

pound 3 ^[a]		Yield $^{[b]}$ (%)		mp ^[c] °C
	OCb	Method B	A	
3a	$SO2$ Tol OCb	$\qquad \qquad \blacksquare$	$24^{[d]}$	107
3b	SO ₂ Tol OCb	54 [e] 38		$70 - 72$
3c	SO ₂ Tol OCb	70	46	71
3d	SO ₂ Tol OCb	48	35	108
3e	$SO2$ Tol ОСЬ	39	35	$63 - 64$
3f	$SO2$ Tol	79		$93 - 95$

Table 1: 1-(p-Toluenesulfonyl)-2-alkenyl Carbamates 3 Prepared Com

[a] All compounds 3 have been characterized by correct microanalyses C±0.2, H±0.2. [b] Yields based on carbamate 1. [c] mp after recrystallisation from ether/pentane. [d] In addition 17% of 5a. [c] In addition 25 % of 5b.

After deprotonation of 3c (n-BuLi, THF, -78 °C) and addition of 2-methylpropanal, LC separation afforded the enone 7a¹⁰ with 55% yield besides some starting material 3c. Similarly, acetone gave the enone 7b with 45% yield. Enones 7 are formed via the α -adducts of type 6, followed by formal migration of the Cb group and loss of lithium p-toluenesulfinate. The addition of 1-2 equiv. tetra(isopropoxy)titanium (TIPT)¹¹ to the solution of 4c does not change the reaction course, but gives slightly increased yields.¹²

In contrast, when chloro-tri(isopropoxy)titanium¹¹ (1.1 equiv.) was used, solely the γ -adduct 9¹³ as a single E-anti-diastereoisomer is formed with 85% yield. From both the high y-regioselectivity and 3.4-anti-diastereoselectivity one must conclude that a titanium intermediate 8c is involved; it adds onto the aldehyde in a pericyclic process with complete allylic inversion. Surprisingly, it is not formed by means of TIPT.

8c is a chiral, but racemic compound which is capable of addition with concominant chirality transfer. This was shown by a procedure, outlined earlier. ^{1b,3} With (S)-2-benzyloxypropanal¹⁴ [(S)-10] both possible diastereoisomers 15 11 and 12 result in equal amounts, whereas with rac-10 the ratio rac-11 / rac-12 is 31 : 69. Here by mutual kinetic resolution, the formation of 12 via the matched pairs $(S)-10$ / $(R)-8c$ and $(R)-10$ / $(S)-8c$ is favoured.³ Contrarily, as expected, the lithium compounds 4 serve as achiral reagents, this was applied for asymmetric nucleophilic alkenoylation, see subsequent Letter.¹²

Owing to the capto-dative stabilization, the double bond in 1-sulfonyl-1-alkenyl carbamates 9-11 is inert to most of the common nucleophilic or electrophilic reagents. However, by reduction of **9a** with excess lithium aluminium hydride the 1,4-diol¹⁶ 13 was obtained with 80% yield.

Acknowledgements: Generous support by the *Deutsche Forschungsgemeinschufi* and the *Fends der Chemischen Industrie* is gratefully acknowledged.

REFERENCES AND FOOTNOTES

- a) Hoppe, D., Kramer, T. *Angew. Chem.* 1986,98,171-173; *Angew. Chem. Int. Ed. Engl. 1986,25,* 1. 160-162. b) Kr&mer, T., Hoppe, D. *Tetrahedron L&t. 1987,28,5149-5152.*
- Hoppe, D., Zschage, 0. *Angew. Chem. 1989,101,67-69; Angew. Chem. Znt. Ed. Engl. 1989,28,69-71.* $\mathbf{2}$
- Hoffmann, R. W., Lanz, J., Mettemich, R., Tarara, G., Hoppe, D. *Angew. Chem.* 1987,99,1196- 1197; 3. *Angew. Chem. Int. Ed. Engl. 1987,26,* 1145-l 146.
- $\overline{4}$. a) Hoppe, D. *Angew. Chem.* **1984,96,930-946;** *Angew.* Chem. *Int. Ed.* Engl. 1984,23,932-948. b) Hoppe, D., in: *Enzymes us Catalysts in Organic Synthesis,* Schneider, M. P. (ed.), Reidel Publishing Company, Dordrecht, 1986, p. 176-198.
- *5.* Structure of metallated allylic sulfones: a) Trost, B. M., Schmuff, N. R. J. *Am.* **Chem. Sot. 1985,107, 396405,** and references. b) Gais, H.-J., Vollhardt, J., Lindner, H. J. *Angew. Chem. 1986,98,916-917; Angew. Chem. Znt. Ed. Engl. 1986,25,939-940. c)* Marsch, M., Harms, K., Massa, W., Boche, G. *Angew. Chem. 1987,99,706707.; Angew. Chem. Znt. Ed.* Engl. 1987,26,696-697. d) Review: Boche, G. *Angew. Chem. 1989,101,* issue 3, in press.
- *6.* Hoppe, D., Hanko, R., Brijnneke, A., Lichtenberg, F., van Hiilsen, E. *Chem. Ber.* 1985, il8,2822-2851.
- 7. Davies, W., Dick, J. H. J. *Chem. Sot.* 1931,2104- 2109.
- 8. Typical Procedures: To a stirred solution of carbamate⁶ 1 (20 mmol) and TMEDA (22 mmol) in hexane (20 mL) , kept below -70 °C under argon, 1.6N *n*-butyllithium in hexane (20 mmol) and after 1 h stirring below -70 $\degree{\rm C}$, p-toluenesulfonyl fluoride⁷ (TosF) (13 mmol) in hexane was added dropwise. After each an additional 1 h, the procedure was repeated twice with n -BuLi (11 mmol) and TosF (5 mmol); and secondly, n -BuLi (5 mmol) and TosF (2 mmol) (Method B). For Method A n -BuLi (22 mmol) and TosF (11 mmol) are added sequentially. After the reaction mixture was allowed to warm to 0 $^{\circ}$ C and pored to ether, water and 2N hydrochloric acid (100 mL each). The usual work-up, followed by LC on silica gel with ether/pentane $(1:4)$ afforded 3.
- 9. 3c: IR: 1710 (C=O), 1335, 1155 cm⁻¹ (O=S=O), 300 MHz ¹H NMR (8, CDCl₃): 0.8 1.3 (m, NCHCH₃); 1.75 (ddd 4-H₂); 2.36 (s, aryl-CH₂); 3.55 and 3.90 (NCH); 5.60 (ddg, 2-H); 5.99 (dad, 3-H); 6.15 (ddq, 1-H); 7.24 and 7.71 (m, aryl- $J_{2,4} = 1.7$ Hz, $J_{3,4} = 6.6$ Hz. 75 MHz H). $J_{1,2}$ = 7.4 Hz, $J_{1,3}$ = 1.1 Hz, $J_{1,4}$ = 0.8 Hz, $J_{2,3}$ = 15.4 Hz, ³C NMR (δ , CDCl₃): 18.18 (C-4), 20.26 and 20.95 (NCHCH₃) $2\overline{1}$.54 (aryl-CH₂), 46.39 (NCH), 86.97 (C-1), 119.25 (C-3), 129.39, 129.59, 133.51, 144.92 (aryl-C),

136.69 (C-2), 151.40 (C=O).

- 10. **7a:** mp. 96 °C, 300 MHz ¹H NMR (8, CDCl₃): 0.96 (d, 7-H₃); 1.05 (d, 6-CH₃); 1.1 1.4 (m, NCHCH₃); 1.90 (dd, 1-Hs); 2.21 (qqd, 6-H); 3.82 and 4.06 (m, NCH); 4.99 (d,5-H); 6.27 (dq, 3-H); 6.99 (dq, 2-H). $J_{1,2} = 6.9$ Hz, $J_{1,3} = 1.7$ Hz, $J_{2,3} = 15.5$ Hz, $J_{6,7} = 6.9$ Hz. 75 MHz ¹³C NMR (δ , CDCl₃): 17.36 (C-7), 18.21 (C-1), 19.37 (6-CH₃), $20 - 21$ (NCHCH₄), 29.71 (C-6), 45 - 46 (NCH), 81.91 (C-5), 127.71 (C-3), 143.06 (C-2), 154.86 (NC=O), 196.39 (C-4).
- 11. Reviews: a) Reetz, M. T. *Organotitanium Reagents in Organic Synthesis,* Springer, Berlin, 1986. b) Seebach, D., Weidmann, B., in: *Modern Synthetic Methods*, Scheffold, R. (ed.), 1983, Salle, Frankfurt, 1983, p. 217-353.
- 12. Tebben, P., Reggelin, M., Hoppe, D. *Tetrahedron L&t. 1989,29,* subsequent paper.
- 13. For the preparation of homoaldol adducts **9a**, 11 and 12 to the solution of lithium compound $4c$ in ether⁸ (1 .O mmol) chloro-tris(isopropoxy)titanium (1.1 mmol) in hexane was added. The reaction mixture was allowed to warm to -22 $\rm{^{\circ}C}$ (30 min) and, again below - 70 $\rm{^{\circ}C}$, the aldehyde was added, the cooling bath removed and stirring was continued at 20 °C for 16 h. Work-up was accomplished as described in ref.8. 9: Oil; 300 MHz ¹H NMR (δ , C₆D₆/CDCl₃ = 1:2): 0.72 (d, 6-H₃); 0.83, 0.97, 1.03 and 1.06 (d, NCHCH₃); 0.88 (d, 3-CH₃); 0.98 (d, 5-CH₃); 1.64 (qqd, 5-H); 2.13 (s, aryl-CH₃); 2.42 (ddq, 3-H); 3.19 (ddd, 4-H); 3.27 (d, OH); 3.38 and 3.94 (qq, NCH); 6.86 (d. 2-H); 7.06 and 7.79 (m, aryl-H). $J_{2,3} = 11.1$ Hz, $J_{3,4} = 8.6$ Hz, $J_{3,3,\text{CH3}} = 6.7$ Hz, $J_{4,5} = 2.9$ Hz, $J_{5,5,\text{CH3}} = 6.8$ Hz, $J_{5,6} = 6.7$ Hz.

.

- 14. a) Massad, S. K., Hawkins, L. D., Baker, D. C. *J. Org. Chem.* 1983,48,5180-5 182, and references cited therein. b) Hoppe, D., Tarara, G., Wilckens, M. *Synthesis* 1989,83-88.
- 15. 11:Oil; $[\alpha]_D^{20}$ = +14.7 (c = 4.59, CH₃OH); 300 MHz ¹H NMR (δ , CDCl₃): 1.01, 1.05, 1.184 and 1.20 $(d, NCHCH_3); 1.04 (d, 3-CH_3); 1.182 (d, 6-H_3); 2.39 (s, aryl-CH_3); 2.62 (ddq, 3-H); 3.25 (br., OH);$ 3.34 (dd, 4-H); 3.47 (qd, 5-H); 3.61 and 3.99 (qq, NCH); 4.382, 4.604 (AB, aryl-CH₂); 6.86 (d, 2-H); 7.2 - 7.4 and 7.75 (m, aryl-H). $J_{2,3} = 11.0$ Hz, $J_{3,4} = 5.9$ Hz, $J_{3,3}$ _{CH3} = 6.9 Hz, $J_{4,5} = 5.1$ Hz, $J_{5,6} = 6.2$ Hz, J_{AB} = 11.8 Hz.

 $12:$ Oil; $[\alpha]_{D}^{20}$ = -11.2 (c = 0.86, CH₃OH), 300 MHz ¹H NMR (CDCl₃): 1.01, 1.071, 1.132 and 1.18 $(d, NCHCH_3); 1.074 (d, 3-CH_3); 1.15 (d, 6-H_3); 2.39 (s, aryl-CH_3); 2.52 (ddq, 3-H); 3.18 (br., OH);$ 3.50 (dq, $5-\hat{H}$); 3.59 and 4.00 (qq, NCH); 3.624 (dd, $4-\hat{H}$); 4.48 and 4.58 (AB, aryl-CH₂); 6.83 (d, 2-H), $7.2 - 7.4$ and 7.75 (m, aryl-*H*).

16. **13:** Oil; 300 MHz ¹H NMR (CDCl₃): 0.91 (d, 3-CH₃); 0.936 (d, 6-H₃ and 5-CH₃); 1.59 (m, 3-H); 1.73 (m, 3-H); 1.73 (m, 2-H₂); 1.83 (qqd, 5 H), 3.05 (br., 2 OH); 3.10 (dd, 4-H); 3.61, 3.76 (AB, 1-H₂). $J_{AB} = 10.7 \text{ Hz}, J_{A,2} = 6.7 \text{ Hz}, J_{B,2} = 4.8 \text{ Hz}, J_{3,8} = 6.9 \text{ Hz}, J_{3,4} = 6.6 \text{ Hz}, J_{4,5} = 5.1 \text{ Hz},$ $J_{5.6} = J_{5.5}$ c_{H3} = 6.8 Hz.

{Received in Germany 15 March 1989)